Integrality of Stickelberger elements and the equivariant Tamagawa number conjecture

نویسنده

  • Andreas Nickel
چکیده

Let L/K be a nite Galois CM-extension of number elds with Galois group G. In an earlier paper, the author has de ned a module SKu(L/K) over the center of the group ring ZG which coincides with the Sinnott-Kurihara ideal if G is abelian and, in particular, contains many Stickelberger elements. It was shown that a certain conjecture on the integrality of SKu(L/K) implies the minus part of the equivariant Tamagawa number conjecture at an odd prime p for an in nite class of (non-abelian) Galois CM-extensions of number elds which are at most tamely rami ed above p, provided that Iwasawa's μ-invariant vanishes. Here, we prove a relevant part of this integrality conjecture which enables us to deduce the equivariant Tamagawa number conjecture from the vanishing of μ for the same class of extensions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit Reciprocity for Rubin-Stark Elements

Given an abelian, CM extension K of any totally real number field k, we restate and generalise two conjectures ‘of Stark type’ made in [So5]. The Integrality Conjecture concerns the image of a p-adic map sK/k,S determined by the minus-part of the S-truncated equivariant L-function for K/k at s = 1. It is connected to the Equivariant Tamagawa Number Conjecture of Burns and Flach. The Congruence ...

متن کامل

On the equivariant Tamagawa number conjecture in tame CM-extensions, II

We use the notion of non-commutative Fitting invariants to give a reformulation of the equivariant Iwasawa main conjecture (EIMC) attached to an extension F/K of totally real elds with Galois group G, where K is a global number eld and G is a p-adic Lie group of dimension 1 for an odd prime p. We attach to each nite Galois CM-extension L/K with Galois group G a module SKu(L/K) over the center o...

متن کامل

On the Equivariant Tamagawa Number Conjecture for Tate Motives and Unconditional Annihilation Results

Let L/K be a finite Galois extension of number fields with Galois group G. Let p be a prime and let r ≤ 0 be an integer. By examining the structure of the p-adic group ring Zp[G], we prove many new cases of the p-part of the equivariant Tamagawa number conjecture (ETNC) for the pair (h(Spec(L))(r),Z[G]). The same methods can also be applied to other conjectures concerning the vanishing of certa...

متن کامل

On the Equivariant Tamagawa Number Conjecture for Tate Motives , Part II . Dedicated to John

Let K be any finite abelian extension of Q, k any subfield of K and r any integer. We complete the proof of the equivariant Tamagawa Number Conjecture for the pair (h(Spec(K))(r),Z[Gal(K/k)]). 2000 Mathematics Subject Classification: Primary 11G40; Secondary 11R65 19A31 19B28

متن کامل

Hecke Characters and the K–theory of Totally Real and Cm Number Fields

Let F/K be an abelian extension of number fields with F either CM or totally real and K totally real. If F is CM and the BrumerStark conjecture holds for F/K, we construct a family of G(F/K)–equivariant Hecke characters for F with infinite type equal to a special value of certain G(F/K)–equivariant L–functions. Using results of Greither–Popescu [19] on the Brumer–Stark conjecture we construct l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011